On a conjecture of Crittenden and Vanden Eynden concerning coverings by arithmetic progressions
Autor: | R. J. Simpson |
---|---|
Rok vydání: | 1997 |
Předmět: | |
Zdroj: | Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics. 63:396-420 |
ISSN: | 0263-6115 |
Popis: | Crittenden and Vanden Eynden conjectured that ifnarithmetic progressions, each having modulus at leastk, include all the integers from 1 tok2n-k+1, then they include all the integers. They proved this for the casesk= 1 andk= 2. We give various necessary conditions for a counterexample to the conjecture; in particular we show that if a counterexample exists for some value ofk, then one exists for thatkand a value ofnless than an explicit function ofk. |
Databáze: | OpenAIRE |
Externí odkaz: |