A Sturm–Liouville theorem for quadratic operator pencils
Autor: | Alim Sukhtayev, Kevin Zumbrun |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
Real roots Applied Mathematics 010102 general mathematics Scalar (mathematics) MathematicsofComputing_NUMERICALANALYSIS Sturm–Liouville theory Mathematics::Spectral Theory Quadratic operator 01 natural sciences 010101 applied mathematics ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION 0101 mathematics ComputingMilieux_MISCELLANEOUS Analysis Eigenvalues and eigenvectors Mathematics |
Zdroj: | Journal of Differential Equations. 268:3848-3879 |
ISSN: | 0022-0396 |
DOI: | 10.1016/j.jde.2019.10.010 |
Popis: | We establish a Sturm–Liouville theorem for quadratic operator pencils with matrix-valued potentials counting their unstable real roots, with applications to stability of waves. Such pencils arise, for example, in reduction of eigenvalue systems to higher-order scalar problems. |
Databáze: | OpenAIRE |
Externí odkaz: |