Progressive Randomization of a Deck of Playing Cards: Experimental Tests and Statistical Analysis of the Riffle Shuffle

Autor: Mark P. Silverman
Rok vydání: 2019
Předmět:
Zdroj: Open Journal of Statistics. :268-298
ISSN: 2161-7198
2161-718X
DOI: 10.4236/ojs.2019.92020
Popis: The question of how many shuffles are required to randomize an initially ordered deck of cards is a problem that has fascinated mathematicians, scientists, and the general public. The two principal theoretical approaches to the problem, which differed in how each defined randomness, has led to statistically different threshold numbers of shuffles. This paper reports a comprehensive experimental analysis of the card randomization problem for the purposes of determining 1) which of the two theoretical approaches made the more accurate prediction, 2) whether different statistical tests yield different threshold numbers of randomizing shuffles, and 3) whether manual or mechanical shuffling randomizes a deck more effectively for a given number of shuffles. Permutations of 52-card decks, each subjected to sets of 19 successive riffle shuffles executed manually and by an auto-shuffling device were recorded sequentially and analyzed in respect to 1) the theory of runs, 2) rank ordering, 3) serial correlation, 4) theory of rising sequences, and 5) entropy and information theory. Among the outcomes, it was found that: 1) different statistical tests were sensitive to different patterns indicative of residual order; 2) as a consequence, the threshold number of randomizing shuffles could vary widely among tests; 3) in general, manual shuffling randomized a deck better than mechanical shuffling for a given number of shuffles; and 4) the mean number of rising sequences as a function of number of manual shuffles matched very closely the theoretical predictions based on the Gilbert-Shannon-Reed (GSR) model of riffle shuffles, whereas mechanical shuffling resulted in significantly fewer rising sequences than predicted.
Databáze: OpenAIRE