On pro-2 identities of 2×2 linear groups
Autor: | Efim Zelmanov, David BenEzra |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Transactions of the American Mathematical Society. 374:4093-4128 |
ISSN: | 1088-6850 0002-9947 |
DOI: | 10.1090/tran/8327 |
Popis: | Let F ^ \hat {F} be a free pro- p p non-abelian group, and let Δ \Delta be a commutative Noetherian complete local ring with a maximal ideal I I such that c h a r ( Δ / I ) = p > 0 \mathrm {char}(\Delta /I)=p>0 . Zubkov [Sibirsk. Mat. Zh. 28 (1987), pp. 64–69] showed that when p ≠ 2 p\neq 2 , the pro- p p congruence subgroup \[ G L 2 1 ( Δ ) = ker ( G L 2 ( Δ ) ⟶ Δ → Δ / I G L 2 ( Δ / I ) ) GL_{2}^{1}(\Delta )=\ker (GL_{2}(\Delta )\overset {\Delta \to \Delta /I}{\longrightarrow }GL_{2}(\Delta /I)) \] admits a pro- p p identity, i.e., there exists an element 1 ≠ w ∈ F ^ 1\neq w\in \hat {F} that vanishes under any continuous homomorphism F ^ → G L 2 1 ( Δ ) \hat {F}\to GL_{2}^{1}(\Delta ) . In this paper we investigate the case p = 2 p=2 . The main result is that when c h a r ( Δ ) = 2 \mathrm {char}(\Delta )=2 , the pro- 2 2 group G L 2 1 ( Δ ) GL_{2}^{1}(\Delta ) admits a pro- 2 2 identity. This result was obtained by the use of trace identities that originate in PI-theory. |
Databáze: | OpenAIRE |
Externí odkaz: |