Note on the representation of angular momentum by complex differential forms
Autor: | K. Lendi, A.J. van Wonderen |
---|---|
Rok vydání: | 1997 |
Předmět: |
Angular momentum
Hydrogen-like atom Wigner–Eckart theorem Mathematical analysis General Physics and Astronomy Statistical and Nonlinear Physics Position and momentum space Total angular momentum quantum number Orbital motion Angular momentum coupling Angular momentum operator Mathematical Physics Mathematical physics Mathematics |
Zdroj: | Journal of Physics A: Mathematical and General. 30:4439-4445 |
ISSN: | 1361-6447 0305-4470 |
DOI: | 10.1088/0305-4470/30/12/028 |
Popis: | The standard representation of angular momentum on Bargmann's Hilbert space of analytic functions is extended such that domains of operators include non-analytic functions, which are square integrable. Generalized eigenfunctions of angular momentum are proposed, which contain arbitrary complex constants. The eigenfunctions are shown to satisfy a basic requirement which follows from group theory. |
Databáze: | OpenAIRE |
Externí odkaz: |