Popis: |
As it is known well, using of frequency doubling in differential absorption CO2 laser lidars increases the number of atmospheric gases under the control. Additional improvement in potential and gas analyses accuracy, technical and exploitation parameters has to be waited for with design of frequency doublers with more efficient nonlinear crystals. In this work for the first time detailed investigation results are represented on physial properties of new mixed nonlinear crystals grown in accordance with diagram HgGa2S4:CdGa2S4→Hg1-xCdxGa2S4, phase-matching and potential efficiencies of second harmonic generation, so as on results of experimental investigation of TEA and mini TEA CO2 laser frequency doubling with it use. In spite of two time lower nonlinear susceptibility coefficients of both parent crystals in comparison with most efficient middle IR crystals high efficiency of frequency doubling is fixed in mixed crystals at room temperature. It is tree time in comparison with frequency doubling with, for example, popular ZnGeP2 and 5.5 time with AgGaSe2. These advantages are reached because realization of optimal non-critical phase-matching by choose of mixing ratio x=0.5, so as 2.3 time higher damage threshold, lower phonon absorption at CO2 laser wavelengths and lower meanings of refractive indexes at fundamental and second harmonic wavelengths. Exploitation parameters of mixed Hg1-xCdxGa2S4 crystal doublers are not worse than parameters of doublers with well-known crystals.© (2004) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only. |