Universal coding for memoryless sources with countably infinite alphabets
Autor: | A. V. Porov, B. D. Kudryashov |
---|---|
Rok vydání: | 2014 |
Předmět: |
Discrete mathematics
Computer Networks and Communications Binary logarithm Computer Science Applications Combinatorics Redundancy (information theory) Algorithmic efficiency Bounded function Countable set Random variable Generalized normal distribution Information Systems Mathematics Coding (social sciences) |
Zdroj: | Problems of Information Transmission. 50:390-399 |
ISSN: | 1608-3253 0032-9460 |
DOI: | 10.1134/s0032946014040085 |
Popis: | We present an asymptotically efficient coding strategy for a stationary countably infinite source determined over a set of nonnegative integers. If the kth moment µ k of the source data is finite, then asymptotic average coding redundancy for length-n blocks, n ? ?, is upper bounded by C (log n/n) k/(k+1), where C is a nonnegative constant. The coding efficiency is demonstrated via an example of scalar quantization of random variables with generalized Gaussian distribution. |
Databáze: | OpenAIRE |
Externí odkaz: |