On the Burning Number of Generalized Petersen Graphs

Autor: Ta Sheng Tan, Kai An Sim, Kok Bin Wong
Rok vydání: 2017
Předmět:
Zdroj: Bulletin of the Malaysian Mathematical Sciences Society. 41:1657-1670
ISSN: 2180-4206
0126-6705
DOI: 10.1007/s40840-017-0585-6
Popis: The burning number b(G) of a graph G is used for measuring the speed of contagion in a graph. In this paper, we study the burning number of the generalized Petersen graph P(n, k). We show that for any fixed positive integer k, $$\lim _{n\rightarrow \infty } \frac{b(P(n,k))}{\sqrt{\frac{n}{k}}}=1$$ . Furthermore, we give tight bounds for b(P(n, 1)) and b(P(n, 2)).
Databáze: OpenAIRE