On the Burning Number of Generalized Petersen Graphs
Autor: | Ta Sheng Tan, Kai An Sim, Kok Bin Wong |
---|---|
Rok vydání: | 2017 |
Předmět: |
Combinatorics
010201 computation theory & mathematics General Mathematics 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing Generalized Petersen graph 0102 computer and information sciences 02 engineering and technology 01 natural sciences Graph Mathematics |
Zdroj: | Bulletin of the Malaysian Mathematical Sciences Society. 41:1657-1670 |
ISSN: | 2180-4206 0126-6705 |
DOI: | 10.1007/s40840-017-0585-6 |
Popis: | The burning number b(G) of a graph G is used for measuring the speed of contagion in a graph. In this paper, we study the burning number of the generalized Petersen graph P(n, k). We show that for any fixed positive integer k, $$\lim _{n\rightarrow \infty } \frac{b(P(n,k))}{\sqrt{\frac{n}{k}}}=1$$ . Furthermore, we give tight bounds for b(P(n, 1)) and b(P(n, 2)). |
Databáze: | OpenAIRE |
Externí odkaz: |