Popis: |
Fuzzy clustering can express the ambiguity ofsample category, and better reflect the actual needs of datamining. By introducing wavelet transform and artificial immunealgorithm to fuzzy clustering, Wavelet-based Immune Fuzzy C-means Algorithm (WIFCM) is proposed for overcoming theimperfections of fuzzy clustering, such as falling easily into localoptimal solution, slower convergence speed and initialization-dependence of clustering centers. Innovations of WIFCM arethe elite extraction operator and the descent reproductive mode.Using the locality and multi-resolution of wavelet transform, theelite extraction operator explores the distribution and densityinformation of spatial data objects in multi-dimensional spaceto guide the search of cluster centers. Taking advantage ofthe relationship between the relative positions of elite centersand inferior centers, the descent reproductive mode obtains theapproximate fastest descent direction of objective function values,and assures fast convergence of algorithm. Compared to theclassic fuzzy C-means algorithm, experiments on 3 UCI data setsshow that WIFCM has obvious advantages in average numberof iterations and accuracy. |