Influence of the Shape of a Forged Unicorn Hook on its Efficiency

Autor: Andrii Tykhyi, Viktor Dariienko, Viktor Pukalov, Gennadii Portnov
Rok vydání: 2021
Předmět:
Zdroj: Central Ukrainian Scientific Bulletin. Technical Sciences. :127-133
ISSN: 2707-9449
2664-262X
DOI: 10.32515/2664-262x.2021.4(35).127-133
Popis: The article analyzes the cargo forged unicorn hook. The design parameters of the product are substantiated by building a solid model of the hook. The line of cargo hooks with the changed form of sections which theoretically allows to reduce weight by 10% at preservation of loading capacity is offered. Comparison of standards shows that at equal loading capacity at identical classes and groups of classification the size and mass characteristics of products differ in times, and not in all cases in favor of standard hooks. Operational tests show that the shape of the hook must ensure its minimum weight with sufficient strength, if possible the same in all sections when the operating conditions and manufacturing technology. It was found that the contours of the upper and lower parts of the cross sections of the hooks are not subject to change. The geometric ratios of the cross-sectional dimensions of the hooks, as well as the threaded part can be considered determined theoretically and experimentally as optimal. Changing the contour is carried out by replacing the rectilinear sides of the trapezoid sections with curved ones. The obtained pictures of stress distribution in the hook body make it possible to choose the path of design optimization in the direction of changing the contours of the equatorial and meridional sections of the fourth quadrant of the hook contour. The proposed change of the contour is carried out by replacing the rectilinear sides of the trapezoidal sections with curved ones. The stress-strain state with visualization and stress distribution is presented, the parameters of the hook are substantiated by building a solid model in the CAD complex Solidworks. The study of the stress distribution pattern made it possible to propose cross-sectional shapes with the subsequent calculation of the stress-strain state of the created model. Material consumption efficiency due to the optimization increases by 10.8% without reducing the load capacity. The changes in the maximum displacement in the proposed model are insignificant (2.55 mm vs. 2.33 mm in the model GOST 2105-75). Recommendations proposed based on the study of one model configuration can be extended to others, taking into account the technology of manufacturing the product.
Databáze: OpenAIRE