Disjoint essential sets of implicates of a CQ Horn function
Autor: | Petr Kučera, Ondřej Čepek |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Annals of Mathematics and Artificial Intelligence. 61:231-244 |
ISSN: | 1573-7470 1012-2443 |
DOI: | 10.1007/s10472-011-9263-9 |
Popis: | In this paper we study a class of CQ Horn functions introduced in Boros et al. (Ann Math Artif Intell 57(3---4):249---291, 2010). We prove that given a CQ Horn function f, the maximal number of pairwise disjoint essential sets of implicates of f equals the minimum number of clauses in a CNF representing f. In other words, we prove that the maximum number of pairwise disjoint essential sets of implicates of f constitutes a tight lower bound on the size (the number of clauses) of any CNF representation of f. |
Databáze: | OpenAIRE |
Externí odkaz: |