Disjoint essential sets of implicates of a CQ Horn function

Autor: Petr Kučera, Ondřej Čepek
Rok vydání: 2011
Předmět:
Zdroj: Annals of Mathematics and Artificial Intelligence. 61:231-244
ISSN: 1573-7470
1012-2443
DOI: 10.1007/s10472-011-9263-9
Popis: In this paper we study a class of CQ Horn functions introduced in Boros et al. (Ann Math Artif Intell 57(3---4):249---291, 2010). We prove that given a CQ Horn function f, the maximal number of pairwise disjoint essential sets of implicates of f equals the minimum number of clauses in a CNF representing f. In other words, we prove that the maximum number of pairwise disjoint essential sets of implicates of f constitutes a tight lower bound on the size (the number of clauses) of any CNF representation of f.
Databáze: OpenAIRE