A Logic-Based Approach to Mining Inductive Databases
Autor: | Jeffrey Xu Yu, Hong-Cheu Liu, Ying Guan, John Zeleznikow |
---|---|
Rok vydání: | 2007 |
Předmět: |
SQL
Association rule learning Database Computer science InformationSystems_DATABASEMANAGEMENT Fixed point computer.software_genre Query language TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES Operator (computer programming) Data mining Cluster analysis computer computer.programming_language |
Zdroj: | Computational Science – ICCS 2007 ISBN: 9783540725831 International Conference on Computational Science (1) |
DOI: | 10.1007/978-3-540-72584-8_35 |
Popis: | In this paper, we discuss the main problems of inductive query languages and optimisation issues. We present a logic-based inductive query language and illustrate the use of aggregates and exploit a new join operator to model specific data mining tasks. We show how a fixpoint operator works for association rule mining and a clustering method. A preliminary experimental result shows that fixpoint operator outperforms SQL and Apriori methods. The results of our framework could be useful for inductive query language design in the development of inductive database systems. |
Databáze: | OpenAIRE |
Externí odkaz: |