Linear maps preserving G-quasi-isometry operators

Autor: Samir Kabbaj, Iz-iddine EL-Fassi, Abdellatif Chahbi
Rok vydání: 2019
Předmět:
Zdroj: Boletín de la Sociedad Matemática Mexicana. 26:37-43
ISSN: 2296-4495
1405-213X
DOI: 10.1007/s40590-019-00238-2
Popis: Let $${\mathscr {H}}$$ be a complex Hilbert space and $${\mathscr {B}}({\mathscr {H}})$$ the algebra of all bounded linear operators on $${\mathscr {H}}$$. We give the concrete forms of surjective continue unital linear maps from $${\mathscr {B}}({\mathscr {H}})$$ onto itself that preserves G-quasi-isometric operators.
Databáze: OpenAIRE