Linear maps preserving G-quasi-isometry operators
Autor: | Samir Kabbaj, Iz-iddine EL-Fassi, Abdellatif Chahbi |
---|---|
Rok vydání: | 2019 |
Předmět: |
Mathematics::Functional Analysis
Pure mathematics General Mathematics Unital 010102 general mathematics Linear operators Hilbert space Mathematics::General Topology 01 natural sciences 010101 applied mathematics Surjective function symbols.namesake Bounded function Quasi-isometry symbols 0101 mathematics Algebra over a field Mathematics::Representation Theory Mathematics |
Zdroj: | Boletín de la Sociedad Matemática Mexicana. 26:37-43 |
ISSN: | 2296-4495 1405-213X |
DOI: | 10.1007/s40590-019-00238-2 |
Popis: | Let $${\mathscr {H}}$$ be a complex Hilbert space and $${\mathscr {B}}({\mathscr {H}})$$ the algebra of all bounded linear operators on $${\mathscr {H}}$$. We give the concrete forms of surjective continue unital linear maps from $${\mathscr {B}}({\mathscr {H}})$$ onto itself that preserves G-quasi-isometric operators. |
Databáze: | OpenAIRE |
Externí odkaz: |