Probing a divergent van Hove singularity of graphene with a Ca2N support: A layered electride as a solid-state dopant
Autor: | Hideo Hosono, Takeshi Inoshita, Susumu Saito, Masaru Tsukada |
---|---|
Rok vydání: | 2017 |
Předmět: |
Physics
Superconductivity Condensed matter physics Van Hove singularity Fermi level 02 engineering and technology Electronic structure 021001 nanoscience & nanotechnology 01 natural sciences chemistry.chemical_compound symbols.namesake chemistry Saddle point 0103 physical sciences symbols Electride Work function Ideal (ring theory) 010306 general physics 0210 nano-technology |
Zdroj: | Physical Review B. 96 |
ISSN: | 2469-9969 2469-9950 |
DOI: | 10.1103/physrevb.96.245303 |
Popis: | Layered electrides, as typified by ${\mathrm{Ca}}_{2}\mathrm{N}$, are unconventional quasi-two-dimensional metals with low work functions, in which the conduction electrons are localized between the cation layers as well as outside the surface. We have investigated the electronic structure of the interface between a layered electride and another material, using graphene on ${\mathrm{Ca}}_{2}\mathrm{N}$ as an example. Our first-principles calculation shows that a graphene layer on ${\mathrm{Ca}}_{2}\mathrm{N}$ remains flat and is doped to an extremely high density of $n=5\ifmmode\times\else\texttimes\fi{}{10}^{14}\phantom{\rule{4pt}{0ex}}{\mathrm{cm}}^{\ensuremath{-}2}$ with its Fermi level (${E}_{F}$) aligned with the logarithmically divergent van Hove singularity (VHS) at a saddle point of graphene's ${\ensuremath{\pi}}^{*}$ band. This finding shows that graphene/${\mathrm{Ca}}_{2}\mathrm{N}$ is an ideal testing ground for the exploration of the many-body ground states, most notably superconducting states ($p+ip$ wave, $d$ wave, and $f$ wave), predicted to appear when ${E}_{F}$ is close to a VHS. The work function decreases abruptly upon monolayer attachment but reverts to that of ${\mathrm{Ca}}_{2}\mathrm{N}$ upon bilayer attachment. This peculiar behavior is explained in terms of the distinctive electronic structures of the constituent materials and their bonding. |
Databáze: | OpenAIRE |
Externí odkaz: |