Convergence of Eigenfunction Expansions for a Boundary Value Problem with Spectral Parameter in the Boundary Conditions. I
Autor: | Z. S. Aliyev, N. B. Kerimov, V. A. Mehrabov |
---|---|
Rok vydání: | 2020 |
Předmět: |
0209 industrial biotechnology
Basis (linear algebra) General Mathematics 010102 general mathematics Mathematical analysis 02 engineering and technology Eigenfunction Space (mathematics) 01 natural sciences Linear subspace 020901 industrial engineering & automation Ordinary differential equation Boundary value problem 0101 mathematics Real line Analysis Eigenvalues and eigenvectors Mathematics |
Zdroj: | Differential Equations. 56:143-157 |
ISSN: | 1608-3083 0012-2661 |
DOI: | 10.1134/s0012266120020019 |
Popis: | We consider a spectral problem arising in the description of bending vibrations of a homogeneous rod with a longitudinal force acting in the cross sections, with clamped left end, and with a lumped inertial load at the right end. We give a general characterization of the arrangement of eigenvalues on the real line, study the structure of root subspaces and the oscillation properties of eigenfunctions, and analyze the basis properties of the eigenfunction system of this problem in the space $$L_{p}$$, $$1 |
Databáze: | OpenAIRE |
Externí odkaz: |