On the Laurent series for bicomplex holomorphic functions
Autor: | Michael Shapiro, Maria Elena Luna-Elizarrarás, C. O. Pérez-Regalado |
---|---|
Rok vydání: | 2017 |
Předmět: |
Numerical Analysis
Pure mathematics Series (mathematics) Mathematics::Complex Variables Applied Mathematics Laurent series 010102 general mathematics Mathematical analysis Holomorphic function 01 natural sciences 010305 fluids & plasmas Computational Mathematics 0103 physical sciences Convergence (routing) 0101 mathematics Divergence (statistics) Analysis Mathematics |
Zdroj: | Complex Variables and Elliptic Equations. 62:1266-1286 |
ISSN: | 1747-6941 1747-6933 |
DOI: | 10.1080/17476933.2016.1250404 |
Popis: | We consider the notion of the Laurent series for the theory of bicomplex holomorphic functions. Some basic properties of it are established. A special attention is paid to a detailed description of the sets of convergence and divergence of such series which reveals many peculiarities of the situation. |
Databáze: | OpenAIRE |
Externí odkaz: |