Kirchhoff–Schrödinger equations in ℝ2 with critical exponential growth and indefinite potential
Autor: | Henrique R. Zanata, Marcelo F. Furtado |
---|---|
Rok vydání: | 2020 |
Předmět: |
Kirchhoff type
Computer Science::Information Retrieval Applied Mathematics General Mathematics Astrophysics::Instrumentation and Methods for Astrophysics Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) Function (mathematics) Schrödinger equation symbols.namesake Exponential growth symbols Computer Science::General Literature Ground state Mathematical physics Mathematics |
Zdroj: | Communications in Contemporary Mathematics. 23 |
ISSN: | 1793-6683 0219-1997 |
DOI: | 10.1142/s0219199720500303 |
Popis: | We prove the existence of ground state solution for the nonlocal problem [Formula: see text] where [Formula: see text] is a Kirchhoff type function, [Formula: see text] may be negative and noncoercive, [Formula: see text] is locally bounded and the function [Formula: see text] has critical exponential growth. We also obtain new results for the classical Schrödinger equation, namely the local case [Formula: see text]. In the proofs, we apply Variational Methods besides a new Trudinger–Moser type inequality. |
Databáze: | OpenAIRE |
Externí odkaz: |