An extension of Briot–Bouquet differential subordinations with an application to Alexander integral transforms
Autor: | José A. Antonino, Sanford S. Miller |
---|---|
Rok vydání: | 2015 |
Předmět: |
Subordination (linguistics)
Numerical Analysis Pure mathematics Conjecture Applied Mathematics 010102 general mathematics Extension (predicate logic) Integral transform 01 natural sciences 010101 applied mathematics Computational Mathematics Calculus 0101 mathematics Convex function Analysis Differential (mathematics) Mathematics Univalent function |
Zdroj: | Complex Variables and Elliptic Equations. 61:124-136 |
ISSN: | 1747-6941 1747-6933 |
DOI: | 10.1080/17476933.2015.1064403 |
Popis: | This article studies extensions of the well-known Briot–Bouquet differential subordination resultWe extend the result by determining conditions on the functions and so thatThis extension is used to prove several new results about Alexander transforms of spiral-like functions, including a conjecture of Kim and Srivastava. |
Databáze: | OpenAIRE |
Externí odkaz: |