On the Lefschetz zeta function for quasi-unipotent maps on the n-dimensional torus. II: The general case
Autor: | Alberto Mendoza, Marcos J. González, Pedro Berrizbeitia, Víctor F. Sirvent |
---|---|
Rok vydání: | 2016 |
Předmět: |
Discrete mathematics
Pure mathematics Mathematics::Dynamical Systems 010102 general mathematics Periodic point Torus Square-free integer Unipotent Mathematics::Geometric Topology 01 natural sciences 010101 applied mathematics Lefschetz zeta function Arithmetic function Geometry and Topology Lefschetz fixed-point theorem 0101 mathematics Mathematics::Symplectic Geometry Cyclotomic polynomial Mathematics |
Zdroj: | Topology and its Applications. 210:246-262 |
ISSN: | 0166-8641 |
DOI: | 10.1016/j.topol.2016.07.020 |
Popis: | We provide a general formula and give an explicit expression of the Lefschetz zeta function for any quasi-unipotent map on the n -dimensional torus. The Lefschetz zeta function is used to characterize the minimal set of Lefschetz periods for Morse–Smale diffeomorphisms on the n -dimensional torus; we completely describe this set, for different families containing infinitely many Morse–Smale diffeomorphisms. Moreover we show that for any given odd integer, there are Morse–Smale diffeomorphisms such that the corresponding minimal set of Lefschetz periods consists of all square free divisors of the given number. The results of the present article generalize the previous results of Berrizbeitia–Sirvent [7] . The methods used are based on the arithmetical properties of the number n . |
Databáze: | OpenAIRE |
Externí odkaz: |