ON MINIMAL ASYMPTOTIC -ADIC BASES

Autor: Min Tang, Dengrong Ling
Rok vydání: 2015
Předmět:
Zdroj: Bulletin of the Australian Mathematical Society. 92:374-379
ISSN: 1755-1633
0004-9727
DOI: 10.1017/s0004972715000805
Popis: Let$g\geq 2$be a fixed integer. Let$\mathbb{N}$denote the set of all nonnegative integers and let$A$be a subset of$\mathbb{N}$. Write$r_{2}(A,n)=\sharp \{(a_{1},a_{2})\in A^{2}:a_{1}+a_{2}=n\}.$We construct a thin, strongly minimal, asymptotic$g$-adic basis$A$of order two such that the set of$n$with$r_{2}(A,n)=2$has density one.
Databáze: OpenAIRE