Multiwall carbon nanotube/PPC composites: Preparation, structural analysis and thermal stability
Autor: | Eddy W. Hansen, Annika Altskär, Rodney Rychwalski, Carlos Barreto, Siw Bodil Fredriksen |
---|---|
Rok vydání: | 2013 |
Předmět: |
Nanotube
Nanocomposite Materials science Polymers and Plastics Sonication Organic Chemistry General Physics and Astronomy Carbon nanotube law.invention chemistry.chemical_compound chemistry Pulmonary surfactant law Propylene carbonate Materials Chemistry Thermal stability Composite material Glass transition |
Zdroj: | European Polymer Journal. 49:2149-2161 |
ISSN: | 0014-3057 |
DOI: | 10.1016/j.eurpolymj.2013.05.009 |
Popis: | The focus of this report concerns the preparation nanocomposites from poly(propylene carbonate) (PPC) and multiwall carbon nanotubes (MWNTs). A solvent route using tetrahydrofuran, ethoxylated non- ionic surfactants combined with sonication was found to be successful in deagglomerating and dispersing the nanotubes. Transmission electron microscopy revealed highly disentangled and dispersed nanotubes and was supported by the qualitative stability evaluations. The morphology and molecular mobility of the prepared nanocomposites (0.5, 3.0 and 5.0 wt% of nanotubes) were characterized by rheology, microscopy, low-field solid-state nuclear magnetic resonance, and electrical conductivity. The networking of nanotubes was highest with a stearyl alcohol ethoxylate surfactant, and was found to improve with the sonication time. Nanotube percolation was established, both rheologically and electrically, from a filler content of approximately 0.5 wt%. A higher tendency toward particle agglomeration was observed at higher MWNT loadings. Only minor changes in the glass transition temperature were measured presumably due to the presence of solvent and surfactant residues. The thermal stability was marginally improved by increasing the loading and dispersion of the nanotubes, and appeared to be modified by solvent and surfactant residues. |
Databáze: | OpenAIRE |
Externí odkaz: |