On 𝐿¹ convergence of Fourier series with quasi-monotone coefficients

Autor: J. W. Garrett, C. S. Rees, Č. V. Stanojević
Rok vydání: 1978
Předmět:
Zdroj: Proceedings of the American Mathematical Society. 72:535-538
ISSN: 1088-6826
0002-9939
DOI: 10.1090/s0002-9939-1978-0509250-5
Popis: For the class of Fourier series with quasi-monotone coefficients, it is proved that ‖ s n − σ n ‖ = o ( 1 ) , n → ∞ \left \| {{s_n} - {\sigma _n}} \right \| = o(1),n \to \infty , if and only if a n lg ⁡ n = o ( 1 ) , n → ∞ {a_n}\lg n = o(1),n \to \infty . This generalizes a theorem for monotone coefficients and provides a new proof for a result due to Telyakovskii and Fomin.
Databáze: OpenAIRE