On 𝐿¹ convergence of Fourier series with quasi-monotone coefficients
Autor: | J. W. Garrett, C. S. Rees, Č. V. Stanojević |
---|---|
Rok vydání: | 1978 |
Předmět: | |
Zdroj: | Proceedings of the American Mathematical Society. 72:535-538 |
ISSN: | 1088-6826 0002-9939 |
DOI: | 10.1090/s0002-9939-1978-0509250-5 |
Popis: | For the class of Fourier series with quasi-monotone coefficients, it is proved that ‖ s n − σ n ‖ = o ( 1 ) , n → ∞ \left \| {{s_n} - {\sigma _n}} \right \| = o(1),n \to \infty , if and only if a n lg n = o ( 1 ) , n → ∞ {a_n}\lg n = o(1),n \to \infty . This generalizes a theorem for monotone coefficients and provides a new proof for a result due to Telyakovskii and Fomin. |
Databáze: | OpenAIRE |
Externí odkaz: |