Eigenvectors from eigenvalues: the case of one-dimensional Schrödinger operators

Autor: Maxim Zinchenko, Fritz Gesztesy
Rok vydání: 2020
Předmět:
Zdroj: Annals of Functional Analysis. 12
ISSN: 2008-8752
2639-7390
DOI: 10.1007/s43034-020-00090-w
Popis: We revisit an archive submission by Denton et al. (Eigenvectors from eigenvalues: a survey of a basic identity in linear algebra. arXiv:1908.03795v3 [math.RA], 2019) on $$n \times n$$ self-adjoint matrices from the point of view of self-adjoint Dirichlet Schrodinger operators on a compact interval.
Databáze: OpenAIRE