Eigenvectors from eigenvalues: the case of one-dimensional Schrödinger operators
Autor: | Maxim Zinchenko, Fritz Gesztesy |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
Control and Optimization Algebra and Number Theory 010102 general mathematics Mathematics::Spectral Theory 01 natural sciences Dirichlet distribution Identity (music) 010101 applied mathematics symbols.namesake Linear algebra symbols Interval (graph theory) Point (geometry) 0101 mathematics Analysis Schrödinger's cat Eigenvalues and eigenvectors Mathematics |
Zdroj: | Annals of Functional Analysis. 12 |
ISSN: | 2008-8752 2639-7390 |
DOI: | 10.1007/s43034-020-00090-w |
Popis: | We revisit an archive submission by Denton et al. (Eigenvectors from eigenvalues: a survey of a basic identity in linear algebra. arXiv:1908.03795v3 [math.RA], 2019) on $$n \times n$$ self-adjoint matrices from the point of view of self-adjoint Dirichlet Schrodinger operators on a compact interval. |
Databáze: | OpenAIRE |
Externí odkaz: |