Asymptotic Analysis of a Certain Class of Semilinear Parabolic Problem with Interfacial Contact Resistance
Autor: | Ivy Carol B. Lomerio, Editha C. Jose |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Bulletin of the Malaysian Mathematical Sciences Society. 42:1011-1054 |
ISSN: | 2180-4206 0126-6705 |
DOI: | 10.1007/s40840-017-0532-6 |
Popis: | In this paper, we consider a time-dependent semilinear parabolic problem modeling the heat diffusion in a two-component composite. The domain has an $$\varepsilon $$ -periodic interface, where the flux of the temperature is proportional to the jump of the temperature field by a factor of order $$\varepsilon ^\gamma $$ . We determine the existence and uniqueness of the weak solution of the problem and use the periodic unfolding method to find the homogenization results. |
Databáze: | OpenAIRE |
Externí odkaz: |