Asymptotic Analysis of a Certain Class of Semilinear Parabolic Problem with Interfacial Contact Resistance

Autor: Ivy Carol B. Lomerio, Editha C. Jose
Rok vydání: 2017
Předmět:
Zdroj: Bulletin of the Malaysian Mathematical Sciences Society. 42:1011-1054
ISSN: 2180-4206
0126-6705
DOI: 10.1007/s40840-017-0532-6
Popis: In this paper, we consider a time-dependent semilinear parabolic problem modeling the heat diffusion in a two-component composite. The domain has an $$\varepsilon $$ -periodic interface, where the flux of the temperature is proportional to the jump of the temperature field by a factor of order $$\varepsilon ^\gamma $$ . We determine the existence and uniqueness of the weak solution of the problem and use the periodic unfolding method to find the homogenization results.
Databáze: OpenAIRE