Strong Stieltjes distributions and orthogonal Laurent polynomials with applications to quadratures and Padé approximation
Autor: | M. Jiménez-Paiz, C. Díaz-Mendoza, Pablo González-Vera |
---|---|
Rok vydání: | 2005 |
Předmět: |
Algebraic properties
Algebra and Number Theory Applied Mathematics Laurent polynomial Numerical analysis Mathematical analysis Mathematics::Classical Analysis and ODEs Riemann–Stieltjes integral Quadrature (mathematics) Computational Mathematics Orthogonal polynomials Padé approximant Stieltjes transform Mathematics |
Zdroj: | Mathematics of Computation. 74:1843-1871 |
ISSN: | 0025-5718 |
DOI: | 10.1090/s0025-5718-05-01763-1 |
Popis: | Starting from a strong Stieltjes distribution Φ, general sequences of orthogonal Laurent polynomials are introduced and sonic of their most relevant algebraic properties are studied. From this perspective, the connection between certain quadrature formulas associated with the distribution Φ and two-point Pade approximants to the Stieltjes transform of Φ is revisited. Finally, illustrative numerical examples are discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |