The symmetric crosscap spectrum of Abelian groups

Autor: Adrián Bacelo, J. J. Etayo, E. Martínez
Rok vydání: 2017
Předmět:
Zdroj: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 112:633-640
ISSN: 1579-1505
1578-7303
DOI: 10.1007/s13398-017-0434-3
Popis: Every finite group G acts on some non-orientable unbordered surfaces. The minimal topological genus of those surfaces is called the symmetric crosscap number of G. It is known that 3 is not the symmetric crosscap number of any group but it remains unknown whether there are other such values, called gaps. In this paper we study which natural numbers are the symmetric crosscap number of an Abelian group. This set will be called the Abelian crosscap spectrum. We obtain a full result for even numbers and describe properties satisfied by odd numbers in this spectrum.
Databáze: OpenAIRE