The Cantor–Schröder–Bernstein Theorem for $$\infty $$-groupoids

Autor: Martín Hötzel Escardó
Rok vydání: 2021
Předmět:
Zdroj: Journal of Homotopy and Related Structures. 16:363-366
ISSN: 1512-2891
2193-8407
DOI: 10.1007/s40062-021-00284-6
Popis: We show that the Cantor–Schröder–Bernstein Theorem for homotopy types, or $$\infty $$ ∞ -groupoids, holds in the following form: For any two types, if each one is embedded into the other, then they are equivalent. The argument is developed in the language of homotopy type theory, or Voevodsky’s univalent foundations (HoTT/UF), and requires classical logic. It follows that the theorem holds in any boolean $$\infty $$ ∞ -topos.
Databáze: OpenAIRE