Minimum rank of powers of trees
Autor: | In-Jae Kim, Judith J. McDonald, Steve Kirkland, Luz Maria DeAlba, Amy Yielding, Jason Grout |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | The Electronic Journal of Linear Algebra. 23 |
ISSN: | 1081-3810 |
DOI: | 10.13001/1081-3810.1511 |
Popis: | The minimum rank of a simple graph G over a field F is the smallest possible rank among all real symmetric matrices, over F, whose (i, j)-entry (for i 6= j) is nonzero whenever ij is an edge in G and is zero otherwise. In this paper, the problem of minimum rank of (strict) powers of trees is studied. |
Databáze: | OpenAIRE |
Externí odkaz: |