Minimum rank of powers of trees

Autor: In-Jae Kim, Judith J. McDonald, Steve Kirkland, Luz Maria DeAlba, Amy Yielding, Jason Grout
Rok vydání: 2012
Předmět:
Zdroj: The Electronic Journal of Linear Algebra. 23
ISSN: 1081-3810
DOI: 10.13001/1081-3810.1511
Popis: The minimum rank of a simple graph G over a field F is the smallest possible rank among all real symmetric matrices, over F, whose (i, j)-entry (for i 6= j) is nonzero whenever ij is an edge in G and is zero otherwise. In this paper, the problem of minimum rank of (strict) powers of trees is studied.
Databáze: OpenAIRE