Volumes of SLn(ℂ)–representations of hyperbolic 3–manifolds

Autor: Wolfgang Pitsch, Joan Porti
Rok vydání: 2018
Předmět:
Zdroj: Geometry & Topology. 22:4067-4112
ISSN: 1364-0380
1465-3060
DOI: 10.2140/gt.2018.22.4067
Popis: Let M be a compact oriented three-manifold whose interior is hyperbolic of finite volume. We prove a variation formula for the volume on the variety of representations of π 1 ( M ) in SL n ( ℂ ) . Our proof follows the strategy of Reznikov’s rigidity when M is closed; in particular, we use Fuks’s approach to variations by means of Lie algebra cohomology. When n = 2 , we get Hodgson’s formula for variation of volume on the space of hyperbolic Dehn fillings. Our formula also recovers the variation of volume on the space of decorated triangulations obtained by Bergeron, Falbel and Guilloux and Dimofte, Gabella and Goncharov.
Databáze: OpenAIRE