The Brezis-Nirenberg problem for fractional elliptic operators

Autor: Marcos Montenegro, Ko-Shin Chen, Xiaodong Yan
Rok vydání: 2016
Předmět:
Zdroj: Mathematische Nachrichten. 290:1491-1511
ISSN: 0025-584X
DOI: 10.1002/mana.201600072
Popis: Let L= div (A(x)∇) be a uniformly elliptic operator in divergence form in a bounded open subset Ω of Rn. We study the effect of the operator L on the existence and nonexistence of positive solutions of the nonlocal Brezis–Nirenberg problem (−L)su=un+2sn−2s+λuinΩ,u=0on∂Ω where (−L)s denotes the fractional power of −L with zero Dirichlet boundary values on ∂Ω, 0 2s and λ is a real parameter. By assuming A(x)≥A(x0) for all x∈Ω¯ and A(x)≤A(x0)+|x−x0|σIn near some point x0∈Ω¯, we prove existence theorems for any λ∈(0,λ1,s(−L)), where λ1,s(−L) denotes the first Dirichlet eigenvalue of (−L)s. Our existence result holds true for σ>2s and n≥4s in the interior case (x0∈Ω) and for σ>2s(n−2s)n−4s and n>4s in the boundary case (x0∈∂Ω). Nonexistence for star-shaped domains is obtained for any λ≤0.
Databáze: OpenAIRE