Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function
Autor: | Yu. S. Belov |
---|---|
Rok vydání: | 2008 |
Předmět: |
Statistics and Probability
Discrete mathematics Pure mathematics Applied Mathematics General Mathematics media_common.quotation_subject Function (mathematics) Hardy space Infinity Space (mathematics) Linear subspace symbols.namesake symbols Bibliography Subspace topology Mathematics media_common Meromorphic function |
Zdroj: | Journal of Mathematical Sciences. 148:813-829 |
ISSN: | 1573-8795 1072-3374 |
Popis: | Let Θ be an inner function in the upper half-plane and let KΘ = H2 ⊖ ΘH2 be the associated model subspace of the Hardy space H2. We call a nonnegative function ω Θ-admissible if in the space KΘ there exists a nonzero function f ∈ KΘ such that |f| ≤ ω a.e. on ℝ. We give some sufficient conditions of Θ-admissibility for the case where Θ is a meromorphic function and arg Θ grows fast ((argΘ)′ tends to infinity). Bibliography: 9 titles. |
Databáze: | OpenAIRE |
Externí odkaz: |