Rogers–Shephard and local Loomis–Whitney type inequalities

Autor: David Alonso-Gutiérrez, C. Hugo Jiménez, Bernardo González Merino, Rafael Villa, Shiri Artstein-Avidan
Rok vydání: 2019
Předmět:
Zdroj: Mathematische Annalen. 374:1719-1771
ISSN: 1432-1807
0025-5831
DOI: 10.1007/s00208-019-01834-3
Popis: We provide functional analogues of the classical geometric inequality of Rogers and Shephard on products of volumes of sections and projections. As a consequence we recover (and obtain some new) functional versions of Rogers–Shephard type inequalities as well as some generalizations of the geometric Rogers–Shephard inequality in the case where the subspaces intersect. These generalizations can be regarded as sharp local reverse Loomis–Whitney inequalities. We also obtain a sharp local Loomis–Whitney inequality.
Databáze: OpenAIRE