Rogers–Shephard and local Loomis–Whitney type inequalities
Autor: | David Alonso-Gutiérrez, C. Hugo Jiménez, Bernardo González Merino, Rafael Villa, Shiri Artstein-Avidan |
---|---|
Rok vydání: | 2019 |
Předmět: |
Statistics::Theory
Pure mathematics Inequality General Mathematics media_common.quotation_subject 010102 general mathematics Type (model theory) 01 natural sciences Linear subspace 0103 physical sciences Mathematics::Metric Geometry 010307 mathematical physics 0101 mathematics Geometric inequality Mathematics media_common |
Zdroj: | Mathematische Annalen. 374:1719-1771 |
ISSN: | 1432-1807 0025-5831 |
DOI: | 10.1007/s00208-019-01834-3 |
Popis: | We provide functional analogues of the classical geometric inequality of Rogers and Shephard on products of volumes of sections and projections. As a consequence we recover (and obtain some new) functional versions of Rogers–Shephard type inequalities as well as some generalizations of the geometric Rogers–Shephard inequality in the case where the subspaces intersect. These generalizations can be regarded as sharp local reverse Loomis–Whitney inequalities. We also obtain a sharp local Loomis–Whitney inequality. |
Databáze: | OpenAIRE |
Externí odkaz: |