Sonochemical effect on two new Ruthenium(II) complexes with ligand (E)-N-((6-bromopyridin-2-yl)methylene)-4-(methylthio)aniline precursors for synthesis of RuO2 nanoparticles
Autor: | Chang Jin, Mao-Lin Hu, Fahime Bigdeli, Kuan-Guan Liu, Ali Morsali, Hosein Ghasempour |
---|---|
Rok vydání: | 2017 |
Předmět: |
Schiff base
Acoustics and Ultrasonics Absorption spectroscopy Ligand Organic Chemistry Thermal decomposition Infrared spectroscopy chemistry.chemical_element 02 engineering and technology 010402 general chemistry 021001 nanoscience & nanotechnology Photochemistry 01 natural sciences 0104 chemical sciences Ruthenium Inorganic Chemistry chemistry.chemical_compound Aniline chemistry Chemical Engineering (miscellaneous) Environmental Chemistry Radiology Nuclear Medicine and imaging Methylene 0210 nano-technology Nuclear chemistry |
Zdroj: | Ultrasonics Sonochemistry. 39:565-576 |
ISSN: | 1350-4177 |
DOI: | 10.1016/j.ultsonch.2017.05.022 |
Popis: | Two novel Ru(II) complexes [(η6-p-cymene)RuCl(L2)]PF6 (R2) and [(η6-C6H6)RuCl(L2)]PF6 (R4), with ligand (E)-N-((6-bromopyridin-2-yl)methylene)-4-(methylthio)aniline (L2), were synthesized and characterized by elemental analysis, 1H NMR, 13C NMR and IR spectroscopy. Based on X-ray crystallography studies, complexes R2 and R4 have coordination environments with formulated (η6-p-cymene)Ru(N2Cl) and (η6-C6H6)Ru(N2Cl), respectively. The thermal stabilities of compounds R2 and R4 were studied by thermal gravimetric (TG) and differential scanning calorimetry (DSC). Thermal decomposition of these complexes was at 280°C and 260°C under air atmosphere respectively. The interaction of these complexes with calf thymus DNA (CT-DNA) was explored through electronic absorption spectra, fluorescence and redox behavior studies. The results showed that the complexes bind to CT-DNA with electrostatic interactions. Nanoparticles of RuO2 were prepared by calcination of R2 and R4. Also the role of the ultrasound waves on the characteristics of the RuO2 nanoparticles was studied. The nanoparticles were characterized by IR spectroscopy and X-ray diffraction (XRD). Also size and morphology of nanoparticles were studied by scanning electron microscopy (SEM). |
Databáze: | OpenAIRE |
Externí odkaz: |