Nanocellulose Polymer Composites as Innovative Pool for (Bio)Material Development
Autor: | Falko Wesarg, Wolfgang Fried, Friederike Kramer, Dieter Klemm, Dietmar Stadermann, Dieter Schumann, Nadine Heßler |
---|---|
Rok vydání: | 2006 |
Předmět: | |
Zdroj: | Macromolecular Symposia. 244:136-148 |
ISSN: | 1521-3900 1022-1360 |
Popis: | Summary: Using a “never-dried” procedure (according to Figure 4) shaped bacterial nanocellulose (BC, 1% cellulose, 99% water) has been modified by the formation of BC-polymer composites. For this purpose, acrylate and methacrylate monomers and methacrylate crosslinkers were photopolymerized inside an ethanol-swollen nanofiber network. Using the ethanol as solvent and as confirmed by model reactions the synthetic polymer (SP) part of the composites is constructed of crosslinked polymers (number of repeating units in the range of 500). As part of ongoing work on the development of (bio)materials from the innovative pool of BC composites these investigations are recently directed towards the creation of collagen-like materials. Thus, for these purposes, mainly water absorption capacity, strength, and elasticity have to be controlled, whilst still retaining essential features of BC like shape, nanofiber network, pore system, and proved biocompatibility. Using acrylic acid, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate, N-vinyl pyrrolidone as acrylate monomers and triethylene glycol dimethacrylate and 1,4-butandiol dimethacrylate as crosslinkers of different concentrations either a filling of the pores or a coating of the fibers in the BC nanocomposites could be achieved. The small cellulose content of the composites significantly increases the water absorption value and the strength of the material as well as the ability of re-swelling in the case of fiber coated composites. Sample 12 is an optimized BC-SP composite regarding important properties of hyaline cartilage like Young's modulus in the range of 5–20 MPa using the well-known Simplex-method. |
Databáze: | OpenAIRE |
Externí odkaz: |