Decoupling of Banach-valued multilinear forms in independent symmetric Banach-valued random variables
Autor: | Murad S. Taqqu, Terry R. McConnell |
---|---|
Rok vydání: | 1987 |
Předmět: | |
Zdroj: | Probability Theory and Related Fields. 75:499-507 |
ISSN: | 1432-2064 0178-8051 |
DOI: | 10.1007/bf00320330 |
Popis: | Let E be a Banach space and Π: E→ℝ+ be symmetric, continuous and convex. Let {Ui} and {ri} be independent sequences of random variables having, respectively, U(0, 1) and symmetric Bernoulli distributions, and let {U i (j) } and {r i (j) } for j=1, 2, ..., d be independent copies of these sequences. We prove two-sided inequalities between the quantities $$E\Phi (\sum\limits_{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{i} \in \mathbb{Z}_ + ^d } {r_{i_1 } } ...r_{i_d } F_{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{i} } (U_{i_1 } ,...,U_{i_d } ))$$ and their “decoupled” versions $$E\Phi (\sum\limits_{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\iota } \in \mathbb{Z}_ + ^d } {r_{i_1 }^{(1)} ...r_{i_d }^{(d)} } F_{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\iota } } (U_{i_1 }^{(1)} ,..., U_{i_d }^{(d)} ))$$ , for Bochner integrable F i : [0, 1] d →E. This generalizes results of Kwapien and of Zinn. |
Databáze: | OpenAIRE |
Externí odkaz: |