Abstract 235: Hypoxia Enhanced Delivery of Mitochondria-Targeted Catalase Protects Choroid Retinal Microvascular Endothelial Cells from Oxidative Stress

Autor: Christopher J Dougherty, Howard Prentice, Kathleen Dorey, Keith A Webster, Janet C Blanks
Rok vydání: 2007
Předmět:
Zdroj: Circulation. 116
ISSN: 1524-4539
0009-7322
DOI: 10.1161/circ.116.suppl_16.ii_26-c
Popis: Loss of pericytes is a critical event early in the progression of microvascular dysfunction in diabetic retinopathy. Pericyte loss may be linked to high glucose mediated reactive oxygen species generation, blocking N-cadherin trafficking to the endothelial cell surface preventing pericyte recruitment and vessel stabilization. Hydrogen peroxide has been identified as a major free radical produced during high glucose exposure in endothelial cells. The goal of this research is to determine if tissue-specific hypoxia-regulated expression of a mitochondria-targeted catalase can prevent or limit RF/6A microvascular endothelial cell apoptosis and decrease vascular permeability by limiting cellular oxidative stress. For the development of tissue-specific and hypoxia-enhanced expression vectors, promoters were constructed with nine tandem combinations of HREs. This 9x HRE oligomer enhancer was inserted together into a pGL3 firefly luciferase plasmid with the Tie2( short ) promoter for endothelial-specific expression. The 9xHRE-Tie2( sh ) promoter construct was highly selective for RF/6A cells producing a basal amount of mitochondria-targeted catalase equivalent to the Tie2( short ) promoter alone. In response to hypoxia ( pO 2 = 1% ), the 9xHRE-Tie2( short ) promoter showed a 21-fold hypoxia-inducible activation similar in strength to the CMV promoter , measured by dual luciferase assay. The hybrid promoters were incorporated into a replication deficient AAV delivery system for apoptosis and cell culture based endothelial permeability assays. In preliminary assays using RF/6A microvascular endothelial cells, apoptosis was reduced by 58% and permeability was reduced by 46%. The results suggest that mitochondria-targeted catalase protects RF/6A microvascular endothelial cells from apoptosis and reduces endothelial permeability in a high-glucose, low-oxygen environment.
Databáze: OpenAIRE