On binary Kloosterman sums divisible by 3
Autor: | Kseniya Garaschuk, Petr Lisonĕk |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Zdroj: | Designs, Codes and Cryptography. 49:347-357 |
ISSN: | 1573-7586 0925-1022 |
DOI: | 10.1007/s10623-008-9171-0 |
Popis: | By counting the coset leaders for cosets of weight 3 of the Melas code we give a new proof for the characterization of Kloosterman sums divisible by 3 for $${\mathbb{F}_{2^m}}$$ where m is odd. New results due to Charpin, Helleseth and Zinoviev then provide a connection to a characterization of all $${a\in\mathbb{F}_{2^m}}$$ such that $${Tr(a^{1/3})=0}$$ ; we prove a generalization to the case $${Tr(a^{1/(2^k-1)})=0}$$ . We present an application to constructing caps in PG(n, 2) with many free pairs of points. |
Databáze: | OpenAIRE |
Externí odkaz: |