On $$p$$ p -nilpotency of hyperfinite groups
Autor: | Francesca Spagnuolo, S. Camp-Mora, Adolfo Ballester-Bolinches |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Monatshefte für Mathematik. 176:497-502 |
ISSN: | 1436-5081 0026-9255 |
DOI: | 10.1007/s00605-014-0633-3 |
Popis: | Let \(p\) be a prime. We say that class \(\fancyscript{X}\) of hyperfinite \(p\)-groups determines\(p\)-nilpotency locally if every finite group \(G\) with a Sylow \(p\)-subgroup \(P\) in \(\fancyscript{X}\) is \(p\)-nilpotent if and only if \({{\mathrm{N}}}_{G}(P)\) is \(p\)-nilpotent. The results of this paper improve a recent result of Kurdachenko and Otal and show that if a hyperfinite group \(G\) has a pronormal Sylow \(p\)-subgroup in \(\fancyscript{X}\), then \(G\) is \(p\)-nilpotent if and only if \({{\mathrm{N}}}_G(P)\) is \(p\)-nilpotent provided that \(\fancyscript{X}\) is closed under taking subgroups and epimorphic images. If \(\fancyscript{X}\) is not closed under taking epimorphic images, we have to impose local \(p\)-solubility to \(G\). In this case, the hypothesis of pronormality can be removed. |
Databáze: | OpenAIRE |
Externí odkaz: |