Partial and full boundary regularity for non-autonomous functionals with Φ-growth conditions

Autor: Flavia Giannetti, Atsushi Tachikawa, Antonia Passarelli di Napoli
Rok vydání: 2019
Předmět:
Zdroj: Forum Mathematicum. 31:1027-1050
ISSN: 1435-5337
0933-7741
DOI: 10.1515/forum-2019-0039
Popis: We prove partial and full boundary Hölder continuity, under a suitable regularity on the boundary datum, of the minimizers of non-autonomous integral functionals of the type ∫ Ω Φ ⁢ ( ( A i ⁢ j α ⁢ β ⁢ ( x , u ) ⁢ D i ⁢ u α ⁢ D j ⁢ u β ) 1 2 ) ⁢ d ⁢ x , \int_{\Omega}\Phi\bigl{(}(A^{\alpha\beta}_{ij}(x,u)D_{i}u^{\alpha}D_{j}u^{% \beta})^{\frac{1}{2}}\bigr{)}\mathop{}\!dx, where Ω ⊂ ℝ n {\Omega\subset\mathbb{R}^{n}} is a bounded domain, Φ ⁢ ( t ) = t p ⁢ log α ⁡ ( e + t ) {\Phi(t)=t^{p}\log^{\alpha}(e+t)} with 1 < p ≤ n {1 and α > 0 {\alpha>0} , and A ⁢ ( x , s ) = ( A i ⁢ j α ⁢ β ⁢ ( x , s ) ) {A(x,s)=(A^{\alpha\beta}_{ij}(x,s))} is a uniformly elliptic, bounded and continuous function.
Databáze: OpenAIRE