On the antimaximum principle for the discrete p-Laplacian with sign-changing weight
Autor: | Hamza Chehabi, Mohammed Chehabi, Omar Chakrone |
---|---|
Rok vydání: | 2019 |
Předmět: |
Dirichlet problem
0209 industrial biotechnology Work (thermodynamics) Pure mathematics Applied Mathematics 020206 networking & telecommunications 02 engineering and technology Eigenfunction Sign changing Computational Mathematics 020901 industrial engineering & automation Maximum principle 0202 electrical engineering electronic engineering information engineering p-Laplacian Eigenvalues and eigenvectors Mathematics Real number |
Zdroj: | Applied Mathematics and Computation. 342:112-117 |
ISSN: | 0096-3003 |
DOI: | 10.1016/j.amc.2018.09.012 |
Popis: | This work deals with the antimaximum principle for the discrete Neumann and Dirichlet problem − Δ φ p ( Δ u ( k − 1 ) ) = λ m ( k ) | u ( k ) | p − 2 u ( k ) + h ( k ) in [ 1 , n ] . We prove the existence of three real numbers 0 ≤ a λ = b , the problem has no solution. Moreover these three real numbers are optimal. |
Databáze: | OpenAIRE |
Externí odkaz: |