Global Sources of Fine Particulate Matter: Interpretation of PM2.5 Chemical Composition Observed by SPARTAN using a Global Chemical Transport Model

Autor: Aaron van Donkelaar, Kebin B. He, Amit Kumar Misra, Chi Li, Lior Segev, Brent N. Holben, Eloise A. Marais, Paul Bissonnette, Emily Stone, D. Griffith, Graydon Snider, Yeo Lik Khian, Yinon Rudich, Qiang Zhang, Nofel Lagrosas, Michael Brauer, Chien Wang, Nguyen Xuan Anh, Sachchida Nand Tripathi, Yang Liu, J. Vanderlei Martins, Eduardo Quel, Crystal L. Weagle, Clement Akoshile, Jeffrey R. Brook, Jaqueline Burke, Mark D. Gibson, Rizki Pratiwi, Puji Lestari, Robyn N. C. Latimer, Randall V. Martin, Ihab Abboud, Jinlu Dong, Ulfi Muliane, Sajeev Philip, Abdus Salam, Aaron Cohen, Christoph A. Keller, Jong Sung Kim, John Jackson, Ralph A. Kahn
Rok vydání: 2018
Předmět:
Zdroj: Environmental Science & Technology.
ISSN: 1520-5851
0013-936X
DOI: 10.1021/acs.est.8b01658
Popis: Exposure to ambient fine particulate matter (PM2.5) is a leading risk factor for the global burden of disease. However, uncertainty remains about PM2.5 sources. We use a global chemical transport model (GEOS-Chem) simulation for 2014, constrained by satellite-based estimates of PM2.5 to interpret globally dispersed PM2.5 mass and composition measurements from the ground-based surface particulate matter network (SPARTAN). Measured site mean PM2.5 composition varies substantially for secondary inorganic aerosols (2.4–19.7 μg/m3), mineral dust (1.9–14.7 μg/m3), residual/organic matter (2.1–40.2 μg/m3), and black carbon (1.0–7.3 μg/m3). Interpretation of these measurements with the GEOS-Chem model yields insight into sources affecting each site. Globally, combustion sectors such as residential energy use (7.9 μg/m3), industry (6.5 μg/m3), and power generation (5.6 μg/m3) are leading sources of outdoor global population-weighted PM2.5 concentrations. Global population-weighted organic mass is driven by the res...
Databáze: OpenAIRE