Конечнозонный подход в периодической задаче Коши для аномальных волн в нелинейном уравнении Шрeдингера при наличии нескольких неустойчивых мод
Autor: | Petr Georgievich Grinevich, Paolo Maria Santini |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Uspekhi Matematicheskikh Nauk. 74:27-80 |
ISSN: | 2305-2872 0042-1316 |
DOI: | 10.4213/rm9863 |
Popis: | Фокусирующее нелинейное уравнение Шрeдингера (НУШ) является простейшей универсальной моделью для описания модуляционной неустойчивости квазимонохроматических волн в слабо нелинейных средах, которая, в свою очередь, рассматривается как основной механизм появления аномальных волн (АВ) в природе. В данной работе мы исследуем, используя конечнозонный подход, задачу Коши для НУШ для начального поля, представляющего собой общее периодическое возмущение нестабильного постоянного фона (которую мы называем задачей Коши для АВ), в ситуации, когда имеется несколько неустойчивых мод. Нами показано, что конечнозонный подход адаптируется к данной задаче применением трех упрощающих шагов, что позволяет построить решение в главном порядке в терминах элементарных функций от начальных данных. Точнее, нами показано, что в главном порядке: (i) по начальным данным строится разбиение оси времени на систему конечных интервалов; (ii) на каждом интервале $I$ из этого разбиения только подмножество из ${\mathscr N}(I)\leqslant N$ неустойчивых мод является “видимым”; (iii) решение НУШ для $t\in I$ приближается ${\mathscr N}(I)$-солитонным решением ахмедиевского типа, описывающим нелинейное взаимодействие “видимых” неустойчивых мод, параметры которого также выражаются через начальные данные в элементарных функциях. Эти результаты объясняют, почему $m$-солитонные решения ахмедиевского типа с $m\leqslant N$ естественно возникают при решении общей периодической задачи Коши для АВ с конечным числом неустойчивых мод. Библиография: 118 названий. |
Databáze: | OpenAIRE |
Externí odkaz: |