A Beurling–Blecher–Labuschagne type theorem for Haagerup noncommutative $$L^p$$ spaces
Autor: | Madi Raikhan, Turdebek N. Bekjan |
---|---|
Rok vydání: | 2021 |
Předmět: |
Mathematics::Functional Analysis
Algebra and Number Theory Functional analysis Mathematics::Operator Algebras 010102 general mathematics Subalgebra 0211 other engineering and technologies 021107 urban & regional planning 02 engineering and technology State (functional analysis) Type (model theory) Operator theory 01 natural sciences Linear subspace Noncommutative geometry Combinatorics symbols.namesake Von Neumann algebra symbols 0101 mathematics Analysis Mathematics |
Zdroj: | Banach Journal of Mathematical Analysis. 15 |
ISSN: | 1735-8787 2662-2033 |
DOI: | 10.1007/s43037-021-00121-1 |
Popis: | Let $${\mathcal {M}}$$ be a $$\sigma$$ -finite von Neumann algebra, equipped with a normal faithful state $$\varphi$$ , and let $${\mathcal {A}}$$ be maximal subdiagonal subalgebra of $${\mathcal {M}}$$ and $$1\le p |
Databáze: | OpenAIRE |
Externí odkaz: |