Popis: |
The adaptation of organisms to sub-zero temperatures is an intriguing problem in biology and biotechnology. The ice-binding antifreeze proteins are known to be responsible for the adaptation, but the mechanism of their action is still far from being clear. Here we show that: (i) in contrast to common belief, ice-binding proteins do not reduce the water freezing temperature and even raise (1) the ice melting point; (ii) at sub-zero temperatures (to ≈ -30°C), ice can be formed only on ice-binding surfaces, but, for kinetic reasons, not in bulk water; (iii) living cells have some large surfaces, which can bind the antifreeze proteins. These facts allow suggesting that the task of antifreeze proteins is not to bind to the ice crystals already formed in the cell and stop their growth or rearrangement, but to bind to those cell surfaces where the ice nuclei can form, and thus to prevent ice formation completely. |