Structural and thermal degradation behaviour of reclaimed clay nano-reinforced low-density polyethylene nanocomposites
Autor: | Kyari Yates, Ajay K. Mishra, Grant David. Smith, Kerr H. Matthews, Shohel Siddique, Laszlo Csetenyi, James Njuguna |
---|---|
Rok vydání: | 2019 |
Předmět: |
Materials science
Nanocomposite Polymers and Plastics Organic Chemistry 02 engineering and technology Dynamic mechanical analysis Polyethylene 010402 general chemistry 021001 nanoscience & nanotechnology Microstructure 01 natural sciences 0104 chemical sciences Crystallinity Low-density polyethylene chemistry.chemical_compound chemistry Ultimate tensile strength Materials Chemistry Thermal stability Composite material 0210 nano-technology |
Zdroj: | Journal of Polymer Research. 26 |
ISSN: | 1572-8935 1022-9760 |
DOI: | 10.1007/s10965-019-1802-9 |
Popis: | In this study, a novel reclaimed clay nanofiller was used to manufacture low-density polyethylene (LDPE)/Oil based mud filler (OBMF) nanocomposites by a melt compounding process. The mechanical testing samples were manufactured using injection moulding. The effect of reclaimed clay minerals influencing the crystallinity and the dispersion characteristics of this clay in LDPE matrix affecting the structural and thermal properties of the nanocomposites was investigated. It was observed that OBMFs were compatible with LDPE matrix which implies a strong interfacial interaction between the clay layers and polymer and that the influence of clay minerals present in OBMFs formed chemical bonds within the microstructure of the nanocomposites. The char yields of nanocomposites increased with OBMFs content. The TD5% and TD50% (onset degradation temperature at 5 wt% loss and 50 wt% loss, respectively) of the LDPE nanocomposite with 10.0 wt% OBMFs was the highest (27 °C higher in TD5% and 54 °C higher in TD50%) among the nanocomposites. Viscoelastic analysis data showed a sharp decrease in the storage modulus of OBMFs reinforced LDPE nanocomposites. The tan δ spectra presented a strong influence of the filler contents on the relaxation process of LDPE and its nanocomposites. An enhancement of mechanical properties of composites was identified which showed a gain of 14% Young’s modulus and a gain of 18% tensile strength at 10.0 wt% OBMFs loading compared to those properties of neat LDPE. The effect of filler dispersion in LDPE polymer matrix in relation to thermal stability was investigated and heat capacity data is employed to characterise changes in thermal characteristics relating to the nanomorphology of the materials. |
Databáze: | OpenAIRE |
Externí odkaz: |