A dual deep neural network with phrase structure and attention mechanism for sentiment analysis

Autor: Ganesh Gopal Deverajan, Sihong Huang, Zhihua Jiang, Dongning Rao, Rizwan Patan
Rok vydání: 2021
Předmět:
Zdroj: Neural Computing and Applications. 33:11297-11308
ISSN: 1433-3058
0941-0643
DOI: 10.1007/s00521-020-05652-6
Popis: Sentiment analysis of short texts is difficult for their simplicity and compactness. This goes a step further when it comes to the Chinese texts. Although deep learning achieved better accuracy in sentiment analysis, there is a lack of explain-ability. Thus, this paper evaluates the effectiveness of techniques for sentiment analysis of Chinese short financial texts with deep learning. For this, we built a Chinese short financial texts corpus (CSFC) and designed an ablation experiment. Beside the CFSC, we used a Chinese review collection and an English short-text repository in the experiment for comparison. There are five techniques involved. They are the Pinyin, the segmentation, the lexical analysis, the phrase structure and the attention mechanism. As results, we found that the phrase structure and the attention mechanism are two of the best. Therefore, the best model in the experiment is called a Phrase Structure and Attention-based Deep network model (PhraSAD). Moreover, to improve the classification accuracy on neutral data, we use a dual classifier strategy for 3-class problems. Experimental results showed that PhraSAD outperformed all other compared models on all experimental datasets.
Databáze: OpenAIRE