Design and simulation of gas turbine blade fatigue testing rig driven by electric magnet
Autor: | Haipeng Geng, Yu Fang, Xifeng Zhou, Baisong Yang, Lie Yu, Xueyun Liu, Wengjie Cheng |
---|---|
Rok vydání: | 2017 |
Předmět: |
Gas turbines
Engineering animal structures Blade (geometry) Turbine blade Electromagnet business.industry 020208 electrical & electronic engineering food and beverages Fatigue testing 02 engineering and technology Structural engineering law.invention Stress (mechanics) stomatognathic system law Thermal mechanical 0202 electrical engineering electronic engineering information engineering business Vibration fatigue |
Zdroj: | 2017 IEEE International Conference on Mechatronics and Automation (ICMA). |
DOI: | 10.1109/icma.2017.8016131 |
Popis: | Evaluating the high cycle fatigue (HCF) and the thermal mechanical fatigue (TMF) is a critical aspect of the heavy duty gas turbine blade design and manufacture. But the highly accelerated stress screening (HASS) method can be used to assess the high cycle fatigue life of the blades and the manufacturing process defects. In this paper, an electromagnetic resonant device is designed to test HCF and TMF using the sine resonance search method. Continuous sinusoidal excitation force acting on the device, a relatively large dynamic stress on the blade will be obtained. Mechanical behavior of the blade under dynamic stress will be obtained, and the fatigue life, manufacturing defects and design of the blade can be evaluated. The device can also be integrated to a high-frequency heating load frame, which provides the thermal mechanical fatigue cycle test. This study demonstrates the capabilities of the apparatus by performing interaction tests. The initial results of the full-scale blade testing results prove the feasibility of this method and the device. Evaluating the high cycle fatigue (HCF) and the thermal mechanical fatigue (TMF) is a critical aspect of the heavy duty gas turbine blade design and manufacture. But the highly accelerated stress screening (HASS) method can be used to assess the high cycle fatigue life of the blades and the manufacturing process defects. In this paper, an electromagnetic resonant device is designed to test HCF and TMF using the sine resonance search method. Continuous sinusoidal excitation force acting on the device, a relatively large dynamic stress on the blade will be obtained. Mechanical behavior of the blade under dynamic stress will be obtained, and the fatigue life, manufacturing defects and design of the blade can be evaluated. The device can also be integrated to a high-frequency heating load frame, which provides the thermal mechanical fatigue cycle test. This study demonstrates the capabilities of the apparatus by performing interaction tests. The initial results of the full-scale blade testing results prove the feasibility of this method and the device. |
Databáze: | OpenAIRE |
Externí odkaz: |