Generalized Randić Estrada Indices of Graphs

Autor: Jonnathan Rodriguez, Luis Medina, Eber Javier Lenes Puello, Exequiel Mallea-Zepeda
Rok vydání: 2022
Předmět:
Zdroj: Mathematics. 10:2932
ISSN: 2227-7390
DOI: 10.3390/math10162932
Popis: Let G be a simple undirected graph on n vertices. V. Nikiforov studied hybrids of AG and DG and defined the matrix AαG for every real α∈[0,1] as AαG=αDG+(1−α)AG. In this paper, we define the generalized Randić matrix for graph G, and we introduce and establish bounds for the Estrada index of this new matrix. Furthermore, we find the smallest value of α for which the generalized Randić matrix is positive semidefinite. Finally, we present the solution to the problem proposed by V. Nikiforov. The problem consists of the following: for a given simple undirected graph G, determine the smallest value of α for which AαG is positive semidefinite.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje