Problems of core correlation, sediment source ascription and yield estimation in Ponsonby Tarn, West Cumbria, UK

Autor: K. D. van der Post, Frank Oldfield, Peter G. Appleby
Rok vydání: 1999
Předmět:
Zdroj: Earth Surface Processes and Landforms. 24:975-992
ISSN: 1096-9837
0197-9337
DOI: 10.1002/(sici)1096-9837(199910)24:11<975::aid-esp23>3.0.co;2-w
Popis: A suite of 27 short cores, 10 of which have been used for magnetic measurements and four for radiometric dating, provides a framework for reconstructing the processes, patterns and rates of sedimentation in Ponsonby Tarn, a small artificial impoundment created towards the end of the 19th century, close to the Sellafield nuclear reprocessing plant in NW England. Spatial and temporal changes in sedimentation are reconstructed and evidence presented for non-synchroneity in magnetic property changes from core to core in the upper part of the sequence, as a result of sorting and selective deposition at different distances from the inflow to the Tarn. Magnetic measurements alone are therefore not a secure basis upon which to quantify sediment yield for defined time intervals at this site. The chronology, established mainly from 210Pb and 134Cs analyses, allows estimates of mean sediment yield per annum for four periods: prior to AD 1940, 1940–1964, 1964–1986 and 1986–1991. The rates of sediment accumulation have increased in recent times, especially since 1964, with evidence for input from both magnetically enhanced soils and gleyed alluvial and/or podsolized subsoil sources. Pre-1940 mean annual deposition within the present area of the lake is calculated as 19·5 t a−1 and for the period since 1986 (the period of maximum sedimentation rates), as 111·3 t a−1. These represent yields of 7·0 t km−2 a−1 and 39·8 t km−2 a−1, respectively, for the catchment as a whole. Rock magnetic evidence, based on measurements of both bulk samples and the finest particle size separates, suggests that bacterial magnetite, formed within the lake, contributes to the magnetic properties of the sediments, thus modifying the signatures relating to allochthonous sediment input. Copyright © 1999 John Wiley & Sons, Ltd.
Databáze: OpenAIRE