Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space

Autor: O. V. Rusakov
Rok vydání: 2017
Předmět:
Zdroj: Journal of Mathematical Sciences. 225:805-811
ISSN: 1573-8795
1072-3374
DOI: 10.1007/s10958-017-3496-z
Popis: We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we prove the tightness (relative compactness) in the Skorokhod space. Under the conditions of the Central Limit Theorem for vectors, we establish the weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process.
Databáze: OpenAIRE